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Abstract— In space exploration, cooperative modulation tech-
niques have been proposed for prolonging the life-time of sen-
sor nodes within a multihop network. The desire to efficiently
reduce the overall energy-per-bit of a node motivated this study
on the hop diameter (synonomous to the number of hops in a
path) of sensor networks. In this study, we analysed and found
that when the number of transmissions are bounded by constants
≤ 20, the likelihood of successful broadcast is small. Using
simulations, we observed that the diameter decreases very fast
as the transmission radius increases. Another observation is that
the largest connected component emerges when the transmis-
sion radius reaches0.3

√
A, whereA is the area containing the

nodes. This may be used to determine the ideal amplification,
although further simulations on larger networks could be help-
ful. We also found a large gap between the number of nodes
required to populate the area, when all the nodes must be con-
nected, or when only90% of the nodes are connected.
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1 INTRODUCTION

In missions that explore the surface of planets, many light
weight, low energy units such as landers, rovers, and sensors
will be used to collect data. The data is collected and forwarded
back to Earth via an orbiter acting as a relay over long haul
links, such as the links typically used in the Deep Space Net-
work (DSN). Since the surface units are low energy units, it
is essential to minimize each transmitting node’s power. The
transmission radii must be sufficient to establish a network while
minimizing mutual interference and overall cost. For example,
if the nodes of a network need to route each other’s packets,
then each node should ideally transmit with just enough power
to guarantee the connectivity of the network.

The concept of collectively utilizing distributed sensor modules
in a hierarchical manner was first introduced ascooperative sen-
sor networking[1]. An extension of this idea is the concept of
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prolonging the life-time of finite energy sources by leveraging
cooperative modulation techniques[2]. However, cooperative
modulation techniques rely heavily on the efficient usage of bat-
tery power on the local communication links and requires some
sharing of information, which motivates our investigation into
the communication topologies for energy-efficient broadcast.

The connectivity among nodes directly influences the efficiency
and reliability of information dissemination within a network.
Conventionally, the topology of an ad-hoc network is defined by
the transmission radiusr of each node. Due to the dynamic and
ad-hoc nature of such networks, using a fixedr might not ren-
der a connected network at all times. Sometimes, the network is
partitioned into several connected components where each com-
ponent is a connected sub-network, but there are no connections
between the different sub-networks; we call this apartitioned
network.

In [3], Gupta and Kumar showed that, givenn nodes such that
each node covers an RF circular areaπr2

RF = log n+c(n)
n , then

the network approaches connectivity with probability one as
c(n) (the connectivity measure in [3]) approaches infinity, syn-
onymous to the number of nodes approaching infinity. Their
result tells us that, given a fixed areaA and somer, as the area
A becomes more densely populated, the induced communica-
tion graph tends to be connected.

In a previous study [4], we examined the alternate extreme of
[3] and established that the probability of successful broadcast is
low in a sparsely populated areaA. Since the nodes are sparsely
spaced, the probability of obtaining a connected network is low
because each node has a restricted communication radius. This
motivated us to look for sparse graphs with guaranteed connec-
tivity. A sparse graph contains fewer edges, hence, less interfer-
ence. On the other hand, it would imply the need of multi-hop
communication, hence, a longer delay. The graphs we consid-
ered are the minimum spanning tree (MST), the relative neigh-
borhood graph (RNG), and the minimum radius graph (minR).
The MST is a tree connecting all the nodes where the total edge
length of the tree is minimized.

The RNG contains edges, where each edge connects two nodes
that are at least as close to each other as they are to the rest of
the nodes. Letli, lj ∈ R2 be the locations of nodesvi andvj re-
spectively, wherevi 6= vj . Formally, the relative neighborhood
graph (RNG) of a node setV in Euclidean space is the graph
G = (V,E), where(vi, vj) ∈ E if and only if there is no node



vz ∈ V such that‖ li − lz ‖ < ‖ li − lj ‖ and‖ lj − lz ‖ <
‖ li − lj ‖, or equivalently, the edge between nodesvi andvj is
valid if there does not exists any node closer to bothvi andvj .

Assuming each node must use the same transmission radius, a
minR graph is obtained by finding the smallest radiusr which
guarantees network connectivity. That is, any transmission ra-
dius smaller thanr will result in one or more nodes being iso-
lated from the rest of the nodes. From our previous simula-
tions, we found RNG to be a suitable topology for energy-
efficient communication because it compares favorably to MST
and minR in terms of transmission radius, edge density, node
degree, fault tolerance, and hop diameter. These graph prop-
erties affect the energy usage, scheduling and reliability of the
network.

In a wireless network, we want to operate the amplifiers opti-
mally at saturation. On the other hand, assuming a fixed bit
rate, we cannot use a fixed power level if we want to support
a communication topology defined by the RNG because RNG
contains edges of variable lengths. There is clearly a trade-off
between these objectives.

In this paper, we approach the problem of balancing the above
mentioned objectives by studying the connectivity structures of
the communication graphs, assuming a fixed communication ra-
diusr for the nodes. We want to know, at which minimum radius
r do we obtain a connected network, or an almost connected net-
work. Specifically, we are interested in the hop diameter of such
networks because it serves as a lower bound on the number of
transmissions required for broadcast from a node to all the other
nodes.

We derived graph theoretical analyses, considering two cate-
gories of graphs. The first category consists of graphs whose
connectivities are independent of the spatial distribution of the
nodes, where the areaA is variable. The second category con-
tains graphs whose connectivities are influenced by the spatial
distribution of nodes, whereA is fixed. We analyzed the prob-
ability of sparse graphs ofn nodes and a diameterd. Trees are
considered in our analyses as the sparsest connected graphs. We
obtained a lower bound on the probability of trees having a hop
diameterd. Upper and lower bounds on the probability of con-
nected graphs having a hop diameterd are also derived.

For our simulations, we generatedn nodes randomly placed in
a fixed square area, and computed the communication graph
topology assuming a transmission radius ofr, wheren and r
are variables. The resulting data from the simulations are plot-
ted and compared to the plots produced from our graph analyses.

2 COMMUNICATION TOPOLOGIES

Thediameter, or hop diameter, of a graph is the maximum num-
ber of hops between any pair of nodes using a shortest path con-
necting the nodes. Assuming each edge has length one, the num-
ber of hops would be the same as the path-length. Usually, we
expect a larger diameter for sparse graphs and a smaller diame-

ter for dense graphs. In extreme cases, the diameter of a sparse
graph withn nodes can be as high asn − 1 while the diameter
of a fully connected dense graph is one. However, as [5], [6]
pointed out, many real-world graphs are sparse, but their diam-
eters are aroundlog n. An example is the World Wide Web.
The number of edges in this real-world graph is closer ton, than
to

(
n
2

)
. Yet, it was reported that the diameter of the Web is 19

[5]. The reason that such a enormous graph has such a small
diameter is because there are short-cut links each spanning a
large distance, and each such link contributes only one hop to
the diameter. In these graphs, the topologies of the graphs are
independent of geometric distances and the spatial relationship
among the nodes. That is, it may be as likely for a node to con-
nect to its nearby neighbors as it is for the node to connect to
distant nodes. In this sense, the Web is similar to random graphs
[7]. In a random graphG(n, p) with n nodes, each possible edge
has the same probabilityp of being chosen. These graphs tend
to have a regular structure and a diameter proportional tolog n.

However, random graphs may not be an appropriate model for
sensor networks. In a sensor network, each node can only com-
municate with other nodes within a bounded radial area. Thus,
we need to incorporate geometric dependencies and spatial re-
lationships when studying the topology of sensor networks. We
are especially interested in the diameter of sensor networks be-
cause this can be used as a lower bound on the number of trans-
missions needed for broadcast. Intuitively, the diameter of a sen-
sor network might be higher thanO(log n) because the trans-
mission radius could restrict the edge lengths, producing longer
paths between nodes. For example, in a

√
n × √

n grid graph
where the nodes are evenly distributed in a square grid and each
node can only communicate with its left, right, up and down
neighbors, the diameter of such a graph is

√
n. This is not sur-

prising, as Kumar has pointed out that the average node degree
of wireless networks isO(log n) and the average diameter is
O(
√

n) [8].

3 GRAPH ANALYSIS

Our graph analysis is based on several sets of assumptions.

Spatial Independence

First, we considern randomly placed nodes in an areaA, where
A is a variable and its value is a finite number. The nodes are
assumed to have unique positions, so two nodes cannot share
a common location. The nodes are static (not mobile). The
unique position of a node can be used as the node’s unique la-
bel. Therefore, our analysis concerns labeled graphs. In order to
broadcast from a node to all other nodes successfully, connec-
tivity of the graph must be guaranteed. LetEnumconn(n) and
Enumall(n) denote the number of connected labeled graphs
and the number of all possible labeled graphs onn nodes re-
spectively. The probability of connectivity for a labeled graph
is then Enumconn(n)/Enumall(n). Combinatorially, each
edge is either included or excluded from the graph. In other
words, each edge has a50% chance of being included. Thus,
Enumall(n) = 2m, wherem is the number of all possible
edges. We haven nodes, son∗ (n−1) choices of node pairs are



possible. Since the node pair(x, y) and the node pair(y, x) are
represented by the same un-directed edge, the number of all pos-
sible edges isn∗(n−1)

2 . So,Enumall(n) = 2
1
2 n∗(n−1). Indeed,

this is equivalent to [9, Theorem 15.1] stating that the number of

labeled graphs withn nodes isEnumall(n) = 2(n
2). We know

that a minimally connected graph is a spanning tree. Thus, the
number of labeled spanning trees serves as a lower bound on
the number of connected labeled graphs. According to [9], the
number of labeled trees withn node was reported in [10] to be
nn−2 by Caley over a century ago. This can be used as a lower
bound onEnumconn(n).

Bounded Diameter Trees—Motivation to obtain a closed form
solution for the MST leads to the following result.

Theorem 1(Weak lower bound diameter likelihood on trees)
For n nodes, the probability of generating a tree with diameter

d is lower bounded by
( n

d+1)(d−1)n−1−d

nn−2 .

If n ≥ 2d− 1, then we have a tighter lower bound ofLBtree(n)
nn−2

where

LBtree(n) =
(

n

d + 1

) d−1∑

i=1

(d + i− 2)n−d−i . (1)

Proof of Theorem 1:Consider a connected labeled tree with
n nodes. Assume that the diameter of the graph isd where
2 ≤ d ≤ n − 1, and fix a node such that the diameter of the
graph contains the node as an end-point; root the tree at this
end-point.

Since there aren− 1 nodes that are connected in some configu-
ration, for diameterd, we haved + 1 nodes on the diameter. We
consider the path representing the diameter of the graph as the
core of the tree. Thus, on the core, there ared− 1 possible loca-
tions for then−1−d remaining nodes, where then−1−d nodes
are placed with direct connections to thed−1 nodes on the core.

Thus, since each of then − 1 − d nodes can be placed in any
of thed − 1 locations, we have a(d − 1)n−1−d scenarios for a
diameterd where all cases involve nodes directly connected to
thed− 1 nodes on the core.

This quantity does not factor in multi-hop extensions off the
first d − 1 nodes. Thus, we can tighten this lower bound for
branches extended off the core such that the number of possi-
ble node locations increases by one while the number of avail-
able nodes to be placed reduces by one. Specifically, we have∑d−1

i=1 (d − 1 + i − 1)n−1−d−i+1 =
∑d−1

i=1 (d + i − 2)n−d−i.
However, we requiren ≥ 2d− 1.

We can choose from any of then nodes to construct the initiald
diameter, resulting in

(
n

d+1

)
possible scenarios.

Finally, from [10] we have the total number of trees isnn−2,
thus giving us the corresponding bounds stated in the theorem.

As depicted in Figure 1, we see that the lower bound on the
probability of a graph having diameterd is a weak bound when
the number of nodes is large. However, the plot does provide
some insight into the relative likelihood of the graph topology
with respect to various diameter values.
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Fig. 1. Lower bound on the likelihood of a a graph diameter forn nodes.

We do not know how to compute the exact number of
Enumconn, but we can suggest an upper bound.

Bounds on Connected Graphs— A necessarycondition for a
graphG with n nodes to be connected says thatG must contain
at leastn − 1 edges. Thus, if we subtract the number of graphs
with less thann−1 edges fromEnumall, we get an upper bound
for Enumconn. Similarly, we can grow a connected graph by
adding one node at a time, where the added node must be con-
nected to a node already in the connected graph constructed so
far. There is only one choice possible when connecting the first
and second nodes. For the remainingn− 2 nodes, we have,

Bupper(n) = 2(n
2) −

n−2∑

i=1

((
n
2

)

i

)
,

and

Blower(n) = 2
n(n−1)−2

2

n−2∏

k=1

(1− 1
2k+1

) .

Lemma 2(Upper and Lower bound) . Forn nodes there ex-
ists an upper bound,Bupper(n) and lower bound,Blower(n) on
the total number of connected graphs.

Proof of Lemma 2:Note that, subtracting the number of graphs
with less thann − 1 edges fromEnumall(n), we get an up-
per bound forEnumconn(n). This is an upper bound because
havingn − 1 or more edges is anecessarybut not asufficient
condition for connected graphs. The number of graphs withn

nodes andk edges is
((n

2)
k

)
according to [9]. Thus, we have

Enumconn(n) ≤ 2(n
2) −

n−2∑

i=1

((
n
2

)

i

)
.



For n nodes, suppose we connect two nodes. There are2 ways
to connect the third node to each of the first two nodes and one
way to connect to both nodes, or rather, we have

(
2
1

)
+

(
2
2

)
=

2+1 = 3. We can generalize this such that for each of then−2
remaining nodes, the number of possible connections increases
by one where thekth node, fork = 1, . . . , n − 2, has a total of∑k+1

i=1

(
k+1

i

)
possible connections to the previously connectedk

nodes.

Recall the binomial theorem forx + y raised to thenth power
may be represented as

(x + y)n =
n∑

i=0

(
n

i

)
xn−iyi . (2)

Knowing that the total number of possible connected graphs
Enumconn(n) is lower bounded by all possible connections for
the othern− 2 nodes, and using (2) wherex = y = 1, we have

Enumconn(n) ≥
n−2∏

k=1

k+1∑

i=1

(
k + 1

i

)

=
n−2∏

k=1

(2k+1 − 1)

= 2
n(n−1)−2

2

n−2∏

k=1

(1− 1
2k+1

) .

Corollary 3 (Weak bound on graph diameter likelihood) . For
n > 2d− 1, the probability of a graph with diameterd is lower
bounded byLBtree(n)

Bupper(n) .

Proof of Corollary 3:This can be derived from (1) of Theorem
1 and the upper bound from Lemma 2.

Spatial Dependence

Motivated by the work of Gupta and Kumar [3], Jennings and
Okino [4] examined the likelihood of successful broadcast with
bounded number of transmissions for relatively sparse networks.
The result plotted in [4] (duplicated here as Figure 2) of the
number of transmissions needed was made assuming that alln
nodes resided in a variable areaAn, such that

An ≥ 6π + (2π + 3
√

3)(n− 2)
6

r2 , (3)

and r is the communication radius. We noticed that there is
striking similarity between the likelihood of such events and the
spatial independent plot of Figure 1.

4 SIMULATION RESULTS

For our simulation runs∗, we generatedn nodes, randomly
placed in an areaA, wheren = 5, 10, 15, · · · , 100. andA is

∗We have implemented the algorithms in JAVA (version 1.2) on a Sun Ultra-10
workstation.
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Fig. 2. The likelihood of successful broadcast given the number of transmis-
sions and no knowledge on connectivity for various number of nodesn

a fixed area of6002 square units, and diagonal600
√

2 units.
Two uniformly distributed random integers are generated as the
coordinate of each node in 2D. The transmission radii are cho-
sen as a fraction of the length/width ofA. The factors used
are .01, .02, .05, .1, .15, · · · , .85. Since the length/width ofA
is 600, the specific radiir used are6, 12, 30, 60, 90, · · · , 510 re-
spectively. That is, using a factor of.01, the radius is600×.01 =
6. For eachn, we generate1000 node sets. Each node set is
paired with eachr to obtain a graphG. Then, we compute the
number of connected components inG. If G contains a single
connected component, then the graph is connected and we com-
pute the diameter ofG. If G contains more than one connected
component, then we choose the largest connected component
and compute its diameter.
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Fig. 3. The hop diameter of the graph for specificn with respect tor, where
r = 0.4 means the actual radius value of0.4× 600 = 240, 600 is the width or
length of the square areaA.

Figure 3 shows the hop diameter of a connected graph withn
nodes, averaged over the1000 graphs. Clearly, the hop diam-
eter decreases asr increases. Note that, whenn is large, we



obtain a connected graph at smallerr values. An interesting
question is, “for a given radiusr, what is the minimum number
of nodes required to achieve connectivity?” In Figure 4, we plot
the smallestn values such that the number of nodes in the largest
connected component is≥ n× v, wherev = .5, .75, .9, 1.0.
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Fig. 4. Minimum number of nodes required to achieve partial connectivity.

Note that, to guarantee connectivity atr = 0.3 requires≥ 90
nodes. On the other hand, for the samer, we only need to have
≥ 30 nodes to guarantee that90% of the nodes are connected in
a single component. So, for applications that do not require all
the nodes to be connected, we can use fewer nodes. In the above
example, we can cut down the number of nodes to one-third.
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Fig. 5. The fraction of nodes in the largest connected component in graphs
produced by each(n, r) pair.

From Figure 5, we observe that atr = 0.3, a large connected
component emerges very fast asn increases. Whenr > 0.3,
even with a smalln, we still get a large connected component.
This confirms the observations made in Figure 4 So, for ran-
domly place points using uniform distribution, it seems that if

we use a radius fraction of0.3, there is a high probability of
connectivity whenn ≤ 100. We believe that a smaller factor
of r can be used asn becomes larger. However, we need to run
further simulations to verify this.

Using fixedr values, we observe the largest connected compo-
nent with respect to hop diameter andn. Suppose the largest
connected component hasi nodes, we defineconnected portion
as i

n . We used14 different fraction values forr, but we choose
to include only four representative plots.
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Fig. 6. Connected portion withr = .15.
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Fig. 7. Connected portion withr = .2.

Note that Figures 6-9 all have the similar shape as Figure 1
where there is a single peak. Figure 6 has a close resemblance
to Figures 1 and 2 because asn increases, the highest connected
portion tends to have a smaller diameter value. This can be seen
by regarding the curves along the x-axis for the different values
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Fig. 8. Connected portion withr = .3.
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Fig. 9. Connected portion withr = .80.

of n, and see the highest point shifts to the left asn increases. It
is also interesting to observe that asr ≥ 0.2, the highest point
appears to occur on the same diameter value, as shown in Fig-
ures 7-9. This seems to imply that the diameter of the largest
connected component is around the same value regardless of the
values ofn. It also implies thatr is large enough so that the
diameter stays at a small constant. In Figures 6-8, we observe
that the connected portion approaches one asn increases. Fig-
ure 9 shows that if we use a larger ≥ 0.8, then the connected
portion is one no matter whatn is. It also show that the diame-
ter is at one which means the graph is similar to a clique (fully
connected graph).

It seems discouraging that the connected portion for smallr is so
low. However, our simulation runs generate at most100 nodes in
an area of360, 000 square units. That means, we have one node

per3600 square units, which has a diagonal of60
√

2 units. To
determine what fraction this is with respect to a side ofA, we get
60
600

√
2 = 0.1

√
2 ≈ 0.1414 which is very close to ther value we

used0.15. Expanding on this, if we increasen, we conjecture
that graph connectivity will occur atr < 0.15. On the other
hand, we expect the diameter to increase with respect ofn.

5 AN APPLICATION

In [2], Quirk et al. proposed to use cooperative modulation tech-
niques for long haul relay in space exploration missions where
sensor networks are used on the surface of the planet being
explored. By sharing the information to be transmitted to the
satellite among the sensor nodes, they can cooperate to reduce
the total energy needed to transmit the data from the surface
of a planet to orbit, thus extending the lifetime of the energy-
restricted sensor nodes. They presented and showed that the
node-selection on orthogonal channels (NSOC) scheme offers
significant energy savings over the non-cooperative communi-
cation method. For local communication, they had only con-
sidered line and grid topologies. Our result is applicable to the
NSOC method by considering arbitrary topologies imposed by
random placement of the nodes. For example, knowing the size
of the bounding areaA which contains all the sensor nodes,
and the number of sensor nodesn, we can obtain the valuer
such that the resulting graph has a high probability of being
connected (given random placement of nodes with uniform dis-
tribution). Fromr, we can determine the amplifier signal level
needed. This in turn implies a communication topology for local
communication among the sensor nodes prior to the cooperative
long-haul communication to the satellite.

6 CONCLUSION

The desire to efficiently reduce the overall energy-per-bit of a
node motivated this study on the diameter of sensor networks.
Diameters are important because it can be used as lower bound
estimates on the number of transmissions required to broadcast
information. We derived a lower bound on the likelihood of a
tree withn nodes and diameterd, in terms ofd andn. We also
derived an upper bound and a lower bound on the likelihood of a
connected graph withn nodes and diameterd. From these anal-
yses, we estimated the likelihood of successful broadcast in a
network ofn nodes where the number of transmissions is fixed.
We observe that whenn reaches20, the probability of success-
ful broadcast within a fixed number of transmissions becomes
very small.

From our simulations, we observed that the diameter of a net-
work decreases very fast as the transmission radius increases.
Specifically, asr is increased, the diameter is decreased by a
fraction. We also noticed that atr = 0.3, we can obtain a con-
nected graph with as few as10 nodes. If guaranteed connectivity
of all the nodes is not required, we found that fewer nodes are
needed to populate the area to have≥ 90% of the nodes be-
ing connected. In this initial study, the result seems to suggest
that a large connected component emerges atr = 0.3. Another
interesting property observed is that the largest connected com-
ponent seems to have the same diameter regardless ofn.



For future research, we intend to run additional simulations on
largern values to examine whether a large connected compo-
nent would emerge at smaller values ofr. We will also exam-
ined whether the largest connected component will still have the
same diameter for larger values ofn.

As another extension to our current work, we propose a new
metric representing the confidence on connectivity which we
call connectedness. The concept of connectedness is in the spirit
of the work of [11] on currentness for web page access rates and
reliability of information. Forn nodes, we say that the largest
component containsv · n nodes for transmission radiusr with
probabilityα. Specifically, A network is said to have(n, v, α, r)
connectedness if the largest componentv ≤ n nodes are con-
nected with probabilityα using transmission radiusr, andn is
the potential number of nodes in the network. The best case
scenario of connectedness is depicted in Figure 4 whereα is not
explicitly characterized and left for future work.
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